If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2t^2+t=28
We move all terms to the left:
2t^2+t-(28)=0
a = 2; b = 1; c = -28;
Δ = b2-4ac
Δ = 12-4·2·(-28)
Δ = 225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{225}=15$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-15}{2*2}=\frac{-16}{4} =-4 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+15}{2*2}=\frac{14}{4} =3+1/2 $
| 5y-15=02 | | 126-1/2x=-4+1/8x | | (20x+15)=(12x+10) | | 16y-29=12y-17= | | v=8^3 | | -2p=-36 | | 4(x+3)-(2x-1)=5x-(3-x) | | 3(x-2)+2(x-1)=5(x+4)-3 | | X+12-3=x+2 | | 4x-2x+3=-3+7x | | 8x+3-2x=4-5x+6 | | 1/b=6/5b+b | | y=92-1.5 | | 3/a-3=a/a-3-3/2 | | 3y=5(7)−13 | | 3^2(x+1)8/3x+1=9 | | 2-r/5+3r/5=r+2/3 | | 3^2(x+1) | | 3x=1=3 | | -14x=96 | | 16x-4=540 | | 2z+8=5z-80 | | 16x-4=360 | | p-3/5=3 | | 4x+5x-2x+3x=6 | | 24x-5x=4 | | 24x-4x=4 | | 12x+24=360 | | 2x-10=5x-16 | | 5x/12=6x+2 | | 4x-3x-2x-x=50 | | a*3+3=13 |